Premium
Novel dynamic semiempirical proton exchange membrane fuel cell model incorporating component voltages
Author(s) -
Khan Saad S.,
Shareef Hussain,
Wahyudie Addy,
Khalid S.N.
Publication year - 2018
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4038
Subject(s) - proton exchange membrane fuel cell , component (thermodynamics) , voltage , proton , membrane , fuel cells , materials science , chemistry , nuclear engineering , physics , engineering , thermodynamics , chemical engineering , nuclear physics , electrical engineering , biochemistry
Summary This paper introduces a novel dynamic semiempirical model for the proton exchange membrane fuel cell (PEMFC). The proposed model not only considers the stack output voltage but also provides valid waveforms of component voltages, such as the no‐load, activation, ohmic, and concentration voltages of the PEMFC stack system. Experiments under no‐load, ramping load, and dynamic load conditions are performed to obtain various voltage components. According to experimental results, model parameters are optimised using the lightning search algorithm by providing valid theoretical ranges of parameters to the lightning search algorithm code. In addition, the correlation between the vapour and water pressures of the PEMFC is obtained to model the component voltages. Finally, all component voltages and the stack output voltage are validated by using the experimental/theoretical waveforms mentioned in previous research. The proposed model is also compared with a recently developed semiempirical model of PEMFC through particle swarm optimisation. The proposed dynamic model may be used in future in‐depth studies on PEMFC behaviour and in dynamic applications for health monitoring and fault diagnosis.