Premium
Power conversion in renewable energy systems: A review advances in wind and PV system
Author(s) -
L. V. Suresh Kumar,
G. V. Nagesh Kumar
Publication year - 2017
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.3601
Subject(s) - renewable energy , photovoltaic system , converters , network topology , wind power , grid , electrical engineering , electric power system , voltage source , engineering , computer science , energy source , power (physics) , electronic engineering , voltage , physics , geometry , mathematics , quantum mechanics , operating system
Summary Grid‐connected photo voltaic (PV) systems are being developed very fast and systems from a few kW to tenths of a MW are now in operation. As an important source of distributed generation (DS) the PV systems need to comply with a series of standard requirements in order to ensure the safety and the seamless transfer of the electrical energy to the grid. Multilevel voltage source converters (VSC) is a heart of the PV system and are emerging as an important power converter options for low, medium, and high‐power applications. These VSCs have bought numerous advantages, especially in renewable energy systems such as PV and wind energy systems. In this article, several topologies of VSCs, which brings together some concepts from traditional converters and multi‐level converters, are presented. Also, several control strategies for controlling current, voltage, active power and reactive power have also been reviewed. Various topologies with their technical aspects have been reviewed and the best suitable topology and control scheme for grid connected PV and wind energy systems has been suggested. Copyright © 2016 John Wiley & Sons, Ltd.