z-logo
Premium
Numerical investigation into transient response of proton exchange membrane fuel cell with serpentine flow field
Author(s) -
Kuo JennKun,
Li HungYi,
Weng WenChung,
Yan WeiMon
Publication year - 2013
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.2927
Subject(s) - proton exchange membrane fuel cell , overshoot (microwave communication) , mechanics , flow (mathematics) , voltage , current density , current (fluid) , materials science , transient (computer programming) , chemistry , analytical chemistry (journal) , volumetric flow rate , electrical engineering , physics , engineering , membrane , chromatography , biochemistry , quantum mechanics , computer science , operating system
SUMMARY The transient response of a proton exchange membrane fuel cell (PEMFC) with a serpentine flow field design is investigated using a three‐dimensional numerical model. The simulations consider three different flow field designs with 7, 11, and 15 bends, respectively. For the flow field design with 11 bends, three different channel width ratios are considered, namely 25%, 50%, and 75%. The channel width ratio is defined as the ratio of the channel width to the total channel/rib width. The simulation results show that for all of the flow field designs, an overshoot in the local current density occurs when the voltage is reduced instantaneously from 0.7 to 0.5 V because of the high and uniform oxygen mass fraction. Conversely, a significant undershoot occurs when the voltage is increased instantaneously from 0.5 to 0.7 V because of the low and nonuniform oxygen mass fraction. The overshoot and undershoot phenomena are particularly evident in the PEMFC with a 15‐bend flow field. For the flow field design with 11 bends, the channel width ratio has little effect on the current density at an operating voltage of 0.7 V. However, at an operating voltage of 0.5 V, the oxygen concentration into the catalyst and diffusion layers increases with the increasing channel width ratio, which leads to higher current density. As a result, a more significant overshoot phenomenon is observed in the flow field with a width ratio of 75%. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here