z-logo
Premium
Performance analysis and validation on transportation of heat energy over long distance by ammonia–water absorption cycle
Author(s) -
Ma Q.,
Luo L.,
Wang R. Z.,
Xia Z. Z.,
Lin P.,
Souyri B.
Publication year - 2010
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1579
Subject(s) - ammonia , environmental science , thermal , absorption (acoustics) , nuclear engineering , thermal energy , thermodynamics , meteorology , materials science , chemistry , engineering , physics , organic chemistry , composite material
This paper presents the thermodynamic and hydrodynamic feasibility of the application of the ammonia–water absorption system for heat or cold transportation over long distance. A model of a long‐distance heat energy transportation system is built and analyzed, and it shows satisfactory and attractive results. When a steam heat source at the temperature of 120°C is available, the user site can get hot water output at about 55°C with the thermal COP of about 0.6 and the electric COP of about 100 in winter, and cold water output at about 8°C with the thermal COP of about 0.5 and the electric COP of 50 in summer. A small‐size prototype is built to verify the performance analysis. Basically the experimental data show good accordance with the analysis results. The ammonia–water absorption system is a potential prospective solution for the heat or cold transportation over long distance. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom