z-logo
Premium
Theoretical study on an innovative ejector enhanced Joule‐Thomson cycle
Author(s) -
Yu Jianlin,
Chen Jianyong,
Li Yanzhong
Publication year - 2010
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1555
Subject(s) - injector , joule–thomson effect , joule (programming language) , joule heating , nuclear engineering , physics , mechanics , materials science , environmental science , engineering , engineering physics , mechanical engineering , thermodynamics , electrical engineering , power (physics)
This paper describes an innovative ejector enhanced Joule‐Thomson cycle for low‐temperature refrigerators. Since an ejector is introduced into the cycle, the cycle performance is profoundly affected by the pressure lift ratio and entrainment ratio of the ejector. As a case study, the performance characteristic of the novel cycle refrigerator using the non‐azeotropic refrigerant mixture R14/R23 with the molar fraction of 0.6/0.4 is theoretically investigated in detail. The theoretical results show that in a typical refrigeration temperature range from −65°C to −95°C, the novel cycle refrigerator has 24.4%–41.5% improvement in coefficient of performance and 60%–220% enhancement in refrigeration capacity when compared to a basic Joule‐Thomson cycle low‐temperature refrigerator. This achieves a significant advantage as the use of the novel cycle is applied to low‐temperature refrigerators for the medical and commercial applications. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here