Premium
Performance and emission characteristics of turpentine–diesel dual fuel engine and knock suppression using water diluents
Author(s) -
Karthikeyan R.,
Mahalakshmi N. V.
Publication year - 2007
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1291
Subject(s) - diesel fuel , nox , combustion , waste management , diesel engine , environmental science , cetane number , ignition system , diluent , automotive engineering , nuclear engineering , engineering , chemistry , biodiesel , nuclear chemistry , biochemistry , organic chemistry , catalysis , aerospace engineering
In the present work, a normal diesel engine was modified to work in a dual fuel (DF) mode with turpentine and diesel as primary and pilot fuels, respectively. The resulting homogeneous mixture was compressed to a temperature below the self‐ignition point. The pilot fuel was injected through the standard injection system and initiated the combustion in the primary‐fuel air mixture. The primary fuel (turpentine) has supplied most of the heat energy. Usually, in all DF engines, low‐cetane fuels are preferred as a primary fuel. Therefore, at higher loads these fuels start knocking and deteriorating in performances. Usually, DF operators suppress the knock by adding more pilot‐fuel quantity. But in the present work, a minimum pilot‐fuel quantity was maintained constant throughout the test and a required quantity of diluent (water) was added into the combustion at the time of knocking. The advantages of this method of knock suppression are restoration of performance at full load, maintenance of the same pilot quantity through the load range and reduction in the fuel consumption at full load. From the results, it was found that all performance and emission parameters of turpentine, except volumetric efficiency, are better than those of diesel fuel. The emissions like CO, UBHC are higher than those of the diesel baseline (DBL) and around 40–45% reduction of smoke was observed at 100% of full load. The major pollutant of diesel engine, NO x , was found to be equal to that of DBL. From the above experiment, it was proved that approximately 80% replacement of diesel with turpentine is quite possible. Copyright © 2006 John Wiley & Sons, Ltd.