Premium
Thermoeconomic analysis of household refrigerators
Author(s) -
Hepbasli Arif
Publication year - 2007
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1290
Subject(s) - exergy , refrigerant , exergy efficiency , refrigerator car , thermodynamics , capital cost , environmental science , process engineering , second law of thermodynamics , economics , engineering , heat exchanger , physics , macroeconomics
This study deals with thermoeconomic analysis of household refrigerators for providing useful insights into the relations between thermodynamics and economics. In the analysis, the EXCEM method based on the quantities exergy, cost, energy and mass is applied to a household refrigerator using the refrigerant R134a. The performance evaluation of the refrigerator is conducted in terms of exergoeconomic aspects based on the various reference state temperatures ranging from 0 to 20°C. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. Thermodynamic loss rate‐to‐capital cost ratios for each components of the refrigerator are investigated. Correlations are developed to estimate exergy efficiencies and ratios of exergy loss rate‐to‐capital cost as a function of reference (dead) state temperature. The ratios of exergy loss rates to capital cost values are obtained to vary from 2.949 × 10 −4 to 3.468 × 10 −4 kW US$ −1 . The exergy efficiency values are also found to range from 13.69 to 28.00% and 58.15 to 68.88% on the basis of net rational efficiency and product/fuel at the reference state temperatures considered, respectively. It is expected that the results obtained will be useful to those involved in the development of analysis and design methodologies that integrate thermodynamics and economics. Copyright © 2006 John Wiley & Sons, Ltd.