z-logo
Premium
Minimizing shell‐and‐tube heat exchanger cost with genetic algorithms and considering maintenance
Author(s) -
WildiTremblay Philippe,
Gosselin Louis
Publication year - 2007
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1272
Subject(s) - baffle , shell and tube heat exchanger , heat exchanger , tube (container) , engineering , bundle , shell (structure) , mechanical engineering , structural engineering , mechanics , materials science , physics , composite material
This paper presents a procedure for minimizing the cost of a shell‐and‐tube heat exchanger based on genetic algorithms (GA). The global cost includes the operating cost (pumping power) and the initial cost expressed in terms of annuities. Eleven design variables associated with shell‐and‐tube heat exchanger geometries are considered: tube pitch, tube layout patterns, number of tube passes, baffle spacing at the centre, baffle spacing at the inlet and outlet, baffle cut, tube‐to‐baffle diametrical clearance, shell‐to‐baffle diametrical clearance, tube bundle outer diameter, shell diameter, and tube outer diameter. Evaluations of the heat exchangers performances are based on an adapted version of the Bell–Delaware method. Pressure drops constraints are included in the procedure. Reliability and maintenance due to fouling are taken into account by restraining the coefficient of increase of surface into a given interval. Two case studies are presented. Results show that the procedure can properly and rapidly identify the optimal design for a specified heat transfer process. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here