z-logo
Premium
An experimental optimization study on a tube‐in‐shell latent heat storage
Author(s) -
Aydın Orhan,
Akgün Mithat,
Kaygusuz Kamil
Publication year - 2007
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1249
Subject(s) - isothermal process , thermal energy storage , phase change material , materials science , latent heat , heat transfer , tube (container) , shell and tube heat exchanger , thermodynamics , differential scanning calorimetry , shell (structure) , composite material , thermal , mechanics , physics
Thermal energy storage (TES) using phase change materials (PCMs) has recently received considerable attention in the literature, due to its high storage capacity and isothermal behaviour during the storage (melting or charging) and removal (discharging or solidification). In this study, a novel modification on a tube‐in‐shell‐type storage geometry is suggested. In the proposed geometry, the outer surface of the shell is inclined and it is the objective of this study to determine the optimum range for the inclination angle of the shell surface. Paraffin with a melting temperature of 58.06°C, which is supplied by the Merck Company, is used as the PCM. The PCM is stored in the vertical annular space between an inner tube through which the heat transfer fluid (HTF), hot water, is flowing and a concentrically placed outer shell. At first, the thermophysical properties of this paraffin are determined through the differential scanning calorimeter (DSC) analysis. Temporal behaviour of the PCM undergoing a non‐isothermal solid–liquid phase change during its melting or charging by the HTF are determined for different values of the inlet temperature and the mass flow rate of the HTF. The new geometry is shown to respond well with the melting characteristics of the PCM and to enhance heat transfer inside the PCM for a specific range of the shell inclination angle. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here