Premium
Melting of ice slurry in a tube‐in‐tube heat exchanger
Author(s) -
Lee Dong Won,
Sharma Atul
Publication year - 2006
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.1204
Subject(s) - slurry , heat transfer coefficient , thermodynamics , heat exchanger , heat transfer , materials science , heat flux , mass fraction , plate heat exchanger , mass flux , shell and tube heat exchanger , chemistry , composite material , physics
One of the main components of a closed ice slurry system is the heat exchanger in which ice slurry absorbs heat resulting in the melting ice crystals. Design calculations of heat exchangers are mainly based on heat transfer coefficient and pressure drop data. But experiments presented in this paper show the effect of ice slurry mass flux on heat transfer rate and heat transfer coefficient during melting. For the experiments, ice slurry was made from 6.5% ethylene glycol–water solution, flowing through a 16.91mm internal diameter, 1500mm long horizontal copper tube. The ice slurry was heated by hot water circulated at the annulus gap of the heat exchanger. Experiments of the melting process were conducted with changing the ice slurry mass flux and the ice fraction from 800 to 3500kgm −2 s −1 and 0 to 25%, respectively. During the experiment, it was found that the measured heat transfer rates increase with the mass flow rate and ice fraction; however, the effect of ice fraction appears not to be significant at high mass flow rate. At the region of low mass flow rates, a sharp increase in the heat transfer coefficient was observed when the ice fraction was more than a certain value. Experiments were also conducted to investigate the effect of hot water temperature on the heat transfer coefficient. Copyright © 2006 John Wiley & Sons, Ltd.