z-logo
Premium
Seismic collapse risk of precast industrial buildings with strong connections
Author(s) -
Kramar Miha,
Isaković Tatjana,
Fischinger Matej
Publication year - 2009
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.970
Subject(s) - precast concrete , structural engineering , engineering , flexural strength , eurocode , limit state design , seismic loading , cantilever , seismic risk , incremental dynamic analysis , peak ground acceleration , seismic analysis , joint (building) , roof , geotechnical engineering , civil engineering , ground motion
A systematic seismic risk study has been performed on some typical precast industrial buildings that consists of assemblages of cantilever columns with high shear‐span ratios connected to an essentially rigid roof system with strong pinned connections. These buildings were designed according to the requirements of Eurocode 8. The numerical models and procedures were modified in order to address the particular characteristics of the analyzed system. They were also verified by pseudo‐dynamic and cyclic tests of full‐scale large buildings. The intensity measure (IM)‐based solution strategy described in the PEER methodology was used to estimate the seismic collapse risk in terms of peak ground acceleration capacity and the probability of exceeding the global collapse limit state. The effect of the uncertainty in the model parameters on the dispersion of collapse capacity was investigated in depth. Reasonable seismic safety (as proposed by the Joint Committee on Structural Safety) was demonstrated for all the regular single‐storey precast industrial buildings addressed in this study. However, if the flexural strength required by EC8 was exactly matched, and the additional strength, which results from minimum longitudinal reinforcement, was disregarded as well as large dispersion in records was considered, the seismic risk might in some cases exceed the acceptable limits. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here