z-logo
Premium
Initial stiffness of reinforced concrete structural walls with irregular openings
Author(s) -
Li Bing,
Chen Qin
Publication year - 2009
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.946
Subject(s) - stiffness , structural engineering , shear wall , reinforced concrete , parametric statistics , flexural strength , structural system , shear (geology) , geotechnical engineering , flexural rigidity , engineering , geology , materials science , mathematics , composite material , statistics
Reinforced concrete (RC) structural walls with openings are the primary lateral‐load‐carrying elements utilized in many structures designed to resist earthquakes. A review of the technical literature shows that there is a considerable amount of uncertainty with regards to the elastic stiffness of these structures when subjected to seismic excitations. Current design practices often employ a stiffness reduction factor to deal with this uncertainty. In an attempt to develop additional information regarding the stiffness of these structures, this paper discusses an approach to determine the initial stiffness of RC structural walls with irregular openings and low aspect ratios. This approach would consider the effect of both flexural and shear deformations. As a part of this study, an analytical approach to determine stiffness was also developed and validated by comparing theoretical and experimental results obtained from six RC shear walls with irregular openings. Simple equations for assessing initial stiffness of RC structural walls with irregular openings are then proposed, based on these parametric case studies. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here