z-logo
Premium
Stability and identification for rational approximation of frequency response function of unbounded soil
Author(s) -
Du Xiuli,
Zhao Mi
Publication year - 2010
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.936
Subject(s) - frequency domain , mathematics , stability (learning theory) , rational function , nonlinear system , representation (politics) , convolution (computer science) , frequency response , domain (mathematical analysis) , time domain , function (biology) , mathematical analysis , mathematical optimization , control theory (sociology) , computer science , artificial neural network , engineering , physics , electrical engineering , control (management) , quantum mechanics , machine learning , artificial intelligence , politics , political science , law , computer vision , evolutionary biology , biology
Exact representation of unbounded soil contains the single output–single input relationship between force and displacement in the physical or transformed space. This relationship is a global convolution integral in the time domain. Rational approximation to its frequency response function (frequency‐domain convolution kernel) in the frequency domain, which is then realized into the time domain as a lumped‐parameter model or recursive formula, is an effective method to obtain the temporally local representation of unbounded soil. Stability and identification for the rational approximation are studied in this paper. A necessary and sufficient stability condition is presented based on the stability theory of linear system. A parameter identification method is further developed by directly solving a nonlinear least‐squares fitting problem using the hybrid genetic‐simplex optimization algorithm, in which the proposed stability condition as constraint is enforced by the penalty function method. The stability is thus guaranteed a priori . The infrequent and undesirable resonance phenomenon in stable system is also discussed. The proposed stability condition and identification method are verified by several dynamic soil–structure‐interaction examples. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom