z-logo
Premium
Experimental and theoretical study on two types of shape memory alloy devices
Author(s) -
Li Hui,
Mao ChenXi,
Ou JinPing
Publication year - 2008
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.761
Subject(s) - shape memory alloy , sma* , pseudoelasticity , nickel titanium , structural engineering , stiffness , reduction (mathematics) , nonlinear system , materials science , displacement (psychology) , earthquake shaking table , computer science , engineering , martensite , composite material , physics , psychology , microstructure , geometry , mathematics , algorithm , quantum mechanics , psychotherapist
This study proposes two types of shape memory alloy (SMA)‐based devices, the tension‐SMA device (TSD) and the scissor‐SMA device (SSD), for the increase of stiffness. Both devices employ superelastic NiTi wires with a diameter of 1.2 mm. Performance tests to study pseudoelastic behavior of NiTi wires find that NiTi wire's pseudoelastic property is insensitive to loading frequency within the meaningful frequency range of most structures in civil engineering. The detailed design of TSD and SSD using NiTi wire is then presented accordingly. Shaking table tests of a scaled 5‐story steel frame incorporated with TSDs and SSDs, respectively, in the first story are carried out. The experimental results indicate that both SMA devices can effectively reduce building seismic response. SSDs achieve greater response reduction than TSDs due to their displacement magnification configuration. The seismic response of the building model with and without SMA devices is numerically simulated and the simulation results demonstrate that they are in good agreement with the experimental results. Finally, it is identified that by using the wavelet transform method the structures incorporated with SMA devices exhibit nonlinear behavior and the time‐dependent characteristics of natural frequency during earthquake excitation. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here