z-logo
Premium
Combined implicit or explicit integration steps for hybrid simulation
Author(s) -
Mosqueda G.,
Ahmadizadeh M.
Publication year - 2007
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.731
Subject(s) - stability (learning theory) , computer science , degrees of freedom (physics and chemistry) , simple (philosophy) , simplicity , displacement (psychology) , numerical integration , mathematics , path (computing) , algorithm , mathematical optimization , mathematical analysis , psychology , philosophy , physics , epistemology , quantum mechanics , machine learning , psychotherapist , programming language
Explicit integration procedures have been widely adapted and applied to hybrid simulations of the seismic response of structures due to their simplicity. However, these procedures are only conditionally stable and have limited recent applications of hybrid simulations to simple structural models with few degrees of freedom. A novel integration procedure is proposed herein, in which a fully implicit formulation is applied to solve the equation of motion for the hybrid model, but defaults to an explicit or noniterative formulation in steps that fail to converge. The advantages to this approach are the ensured continuity of the simulation and the reduced accumulation of errors that occur during consecutive explicit steps that may lead to instability. The implicit procedure is applied by loading the experimental substructures beyond the expected displacement for the current step, then using the displacements and forces measured through the load path in the iterative implicit scheme. This approach captures the instantaneous behaviour of experimental substructures without physically imposing iterations. Numerical and experimental simulations demonstrate the effectiveness of the proposed integration scheme for multi‐degree‐of‐freedom models, especially in utilization of longer time steps that exceed stability limits of explicit methods, prevention of excitation of higher modes, and testing of stiff systems. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here