z-logo
Premium
Pure aluminium shear panels as dissipative devices in moment‐resisting steel frames
Author(s) -
De Matteis G.,
Mazzolani F. M.,
Panico S.
Publication year - 2007
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.656
Subject(s) - serviceability (structure) , structural engineering , dissipation , stiffening , stiffness , limit state design , dissipative system , seismic loading , context (archaeology) , moment (physics) , seismic analysis , engineering , geology , paleontology , physics , classical mechanics , quantum mechanics , thermodynamics
The use of energy dissipation systems for the seismic control of steel structures represents a valid alternative to conventional seismic design methods. The seismic devices currently employed are mostly based on the metallic yielding technology due to the large feasibility and efficiency they can provide. Within this context, in the current paper an innovative solution based on the adoption of low‐yield‐strength pure aluminium shear panels (SPs) for seismic protection of steel moment‐resisting frames is proposed and investigated. In order to prove the effectiveness of the system, a wide numerical study based on both static and dynamic non‐linear analyses has been carried out, considering a number of different frame‐to‐shear panel combinations, aiming at assessing the effect of the main influential parameters on the seismic response of the structure. The obtained results show that the contribution provided by aluminium SPs is rather significant, allowing a remarkable improvement of the seismic performance of the structure in terms of stiffness, strength and ductility, with the possibility to strongly limit the damage occurring in the members of moment‐resisting frames. In particular, it is clearly emphasized that the stiffening effect provided by SPs allows a more rational design procedure to be adopted, since the serviceability limit state check does not lead to unavoidable and uneconomical increase of the size of main structural members. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here