Premium
Optimal displacement feedback control law for active tuned mass damper
Author(s) -
Nagashima Ichiro
Publication year - 2001
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.60
Subject(s) - control theory (sociology) , tuned mass damper , linear quadratic gaussian control , displacement (psychology) , linear quadratic regulator , vibration control , optimal control , mathematics , stiffness , vibration , damper , engineering , physics , computer science , control (management) , structural engineering , mathematical optimization , psychology , quantum mechanics , artificial intelligence , psychotherapist
Optimal displacement feedback control law is derived for a vibration control of a single‐degree‐of‐freedom structure with an active tuned mass damper (ATMD). Analytical expressions of the linear quadratic regulator (LQR) feedback gains for the ATMD are derived by solving the Ricatti equation straightforwardly. Based on these solutions, it is found that if the stiffness of the tuned mass damper (TMD) is calibrated to satisfy a certain condition, the control law is simplified to be composed of the feedback gains only for the displacement of the structure and the velocity of the auxiliary mass stroke, which is referred to as ‘optimal displacement feedback control’. The mean‐square responses of the structure as well as the auxiliary mass against Gaussian white noise excitations are evaluated by solving the Lyapunov equation analytically based on the stochastic optimal control theory. Using these analytical solutions, the optimal damping parameter for the auxiliary mass is also derived. Finally, the optimal displacement feedback control law is presented. Copyright © 2001 John Wiley & Sons, Ltd.