Premium
A static predictor of seismic demand on frames based on a post‐elastic deflected shape
Author(s) -
Mori Yasuhiro,
Yamanaka Takashi,
Luco Nicolas,
Allin Cornell C.
Publication year - 2006
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.587
Subject(s) - structural engineering , nonlinear system , modal , mode (computer interface) , displacement (psychology) , superposition principle , seismic analysis , earthquake engineering , engineering , mathematics , mathematical analysis , computer science , physics , psychology , chemistry , quantum mechanics , polymer chemistry , psychotherapist , operating system
Predictors of seismic structural demands (such as inter‐storey drift angles) that are less time‐consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square‐root‐of‐sum‐of‐squares (SRSS) rule by taking a first‐mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post‐elastic first‐mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single‐degree‐of‐freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third‐mode response for long‐period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright © 2006 John Wiley & Sons, Ltd.