Premium
Design of torsionally unbalanced structural systems based on code provisions I: Ductility demand
Author(s) -
Tso W. K.,
Zhu T. J.
Publication year - 1992
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.4290210704
Subject(s) - rigidity (electromagnetism) , structural engineering , ductility (earth science) , engineering , enhanced data rates for gsm evolution , physics , telecommunications , creep , thermodynamics
Using a three element single mass model, this paper presents the ductility demands on the elements of torsionally unbalanced systems when subjected to strong earthquake shaking. Torsionally unbalanced systems based on nine structural configurations are considered, ranging from torsionally stiff systems with the centre of rigidity (CR) centrally located to torsionally flexible systems with CR eccentrically located. The strength of the elements is designed based on the Canadian and New Zealand codes, and the Uniform Building Code (UBC) of the United States. It is shown that all three codes can limit the ductility demands on the elements to that of a similar but torsionally balanced system when the system is torsionally stiff. However, substantial additional ductility demands on the element at the stiff edge of the system exist for torsionally flexible systems when the New Zealand code or UBC is used. The large ductility demand is caused by the low strength of the stiff‐edge element permitted by these codes.