Premium
Seismic fracture analysis of concrete gravity dams
Author(s) -
Pekau O. A.,
Chuhan Zhang,
Lingmin Feng
Publication year - 1991
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.4290200404
Subject(s) - structural engineering , gravity dam , superposition principle , cantilever , stiffness , discretization , geotechnical engineering , geology , fracture mechanics , beam (structure) , fracture (geology) , engineering , finite element method , mathematics , mathematical analysis
A numerical procedure for evaluation of the fracture process of gravity dams during strong earthquakes is presented. The BEM is used to discretize the dam reservoir system including the crack surfaces, and stress intensity factors at the crack tip are employed in a stage by stage procedure which simulates the crack extension. For each stage of constant crack length the mode superposition technique is applied; this is made possible by simulating the impact process of crack closing by a load pulse applied at the contact points which permits the structural stiffness to be assumed unchanged. To verify the proposed procedure, a cantilever beam model structure made of gypsum was tested on a shaking table. Good correlation with the numerical results was obtained, from which it is concluded that the procedure can be employed for evaluation of the crack propagation process in concrete structures subjected to dynamic loadings.