Premium
Analytical models for the rigid body motions of skew bridges
Author(s) -
Maragakis Emmanuel A.,
Jennings Paul C.
Publication year - 1987
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.4290150802
Subject(s) - structural engineering , deck , skew , bridge (graph theory) , skewness , engineering , rigid body , kinematics , vibration , geology , physics , mathematics , medicine , telecommunications , statistics , classical mechanics , quantum mechanics
The rigid body motions of the bridge deck, along with the impact between the bridge deck and the abutments, were the source of extensive damage on skew highway bridges during the 1971 San Fernando earthquake. In this paper, a model for the rigid body motions of skew bridges is presented and analysed. The focus of the model is the appropriate representation of the impact between the bridge deck and the abutments and the explanation of the inducement of in‐plane rotational vibrations of the bridge deck as the result of this impact. A simplified model is briefly described first, and the kinematic mechanism of the problem is explained. Then, the analysis of a more detailed and realistic model follows. This model is applied on a short skew bridge located in Riverside, California. The response of this bridge to several earthquake shakings revealed that the planar rigid body rotations of the deck are induced primarily as a result of the skewness of the deck and the impact between the deck and the abutments.