Premium
Hydrodynamic pressures and response of gravity dams to vertical earthquake component
Author(s) -
Chakrabarti P.,
Chopra Anil K.
Publication year - 1972
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.4290010403
Subject(s) - geology , geotechnical engineering , vibration , displacement (psychology) , vertical displacement , gravity dam , ground motion , acceleration , component (thermodynamics) , response analysis , rigid body , structural engineering , mechanics , seismology , engineering , finite element method , physics , classical mechanics , psychology , paleontology , quantum mechanics , psychotherapist , thermodynamics
Hydrodynamic pressures and structural response of concrete gravity dams, including dam‐reservoir interaction, due to the vertical component of earthquake ground motions are investigated. The response of the dam is approximated by the deformations in the fundamental mode of vibration, and the effects of deformability of bed rock on hydrodynamic pressures are recognized in the analysis. Expressions for the complex frequency response functions for the dam displacement, dam acceleration and lateral hydrodynamic force are derived. These results along with the Fast Fourier Transform algorithm are utilized to compute the time‐history of responses of dams of 100, 300 and 600 ft height, with full reservoir, for different values of elastic modulus of mass concrete: 3.0, 3.5, 4.0, 4.5 and 5.0 million psi, to the vertical component of El Centro, 1940, and Taft, 1952, ground motions. It is concluded that the hydrodynamic forces caused by vertical ground motion are affected substantially by damreservoir interaction and depend strongly on the modulus of elasticity of the dam. The dam response to the vertical component of ground motion is compared with that due to the horizontal component. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.