Premium
Development of collapse‐consistent loading protocols for experimental testing of steel columns
Author(s) -
Suzuki Yusuke,
Lignos Dimitrios G.
Publication year - 2020
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.3225
Subject(s) - structural engineering , earthquake shaking table , stiffness , buckling , column (typography) , progressive collapse , nonlinear system , engineering , geotechnical engineering , geology , reinforced concrete , physics , quantum mechanics , connection (principal bundle)
Summary In order to effectively utilize results from quasi‐static cyclic testing on structural components for the earthquake‐induced collapse risk quantification of structures, the need exists to establish collapse‐consistent loading protocols representing the asymmetric lateral drift demands of structures under low‐probability of occurrence earthquakes. This paper summarizes the development of such protocols for experimental testing of steel columns prone to inelastic local buckling. The protocols are fully defined with a deformation‐ and a force‐controlled parameter. They are generally applicable to quantify the capacity and demands of steel columns experiencing constant and variable axial load coupled with lateral drift demands. Through rigorous nonlinear earthquake collapse simulations, it is found that the building height, the column's local slenderness ratio, and ground motion type have the largest influence on the dual‐parameter loading protocol indexes. Comprehensive comparisons with measured data from full‐scale shake table collapse tests suggest that unlike routinely used symmetric cyclic loading histories, the proposed loading protocol provides sufficient information for modeling strength and stiffness deterioration in steel columns at large inelastic deformations.