Premium
Force‐displacement model for solid confined masonry walls with shear‐dominated failure mode
Author(s) -
Yekrangnia Mohammad,
Bakhshi Ali,
Ghannad Mohammad Ali
Publication year - 2017
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2902
Subject(s) - masonry , structural engineering , failure mode and effects analysis , shear (geology) , shear wall , finite element method , mode (computer interface) , displacement (psychology) , engineering , benchmark (surveying) , geology , geotechnical engineering , computer science , petrology , psychology , geodesy , psychotherapist , operating system
Summary This paper addresses the behavior of confined masonry walls with dominating shear failure mode in walls. For this purpose, failure modes of these walls are classified in details. For each failure mode, complete set of analytical‐based relations for deriving parameters related to backbone curves is introduced. Calibrated finite element analyses are utilized as a benchmark for verification of some of the assumptions. The results of the proposed relations are compared with those of several Iranian and non‐Iranian experimental data. Sensitivity analysis is performed in order to understand the effects of important behavioral characteristics of these walls. The results of this study indicate that the proposed relations can accurately simulate behavior of confined masonry walls with dominating shear failure mode regardless of the failure mode in the ties. Moreover, it is concluded that the detailing limitations given in the Iranian Seismic Code are rationally compatible with the behavioral characteristics of confided masonry walls. The results of this study in terms of backbone curves can be utilized as the complementary part to this code. Copyright © 2017 John Wiley & Sons, Ltd.