z-logo
Premium
Collapse risk of controlled rocking steel braced frames with different post‐tensioning and energy dissipation designs
Author(s) -
Steele Taylor C.,
Wiebe Lydell D. A.
Publication year - 2017
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2892
Subject(s) - structural engineering , dissipation , fragility , braced frame , engineering , joint (building) , steel frame , frame (networking) , mechanical engineering , chemistry , physics , thermodynamics
Summary Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R =8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R >8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R >8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here