Premium
Shake table tests on standard and innovative temporary partition walls
Author(s) -
Petrone Crescenzo,
Magliulo Gennaro,
Manfredi Gaetano
Publication year - 2017
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2872
Subject(s) - earthquake shaking table , structural engineering , shake , stiffness , engineering , partition (number theory) , range (aeronautics) , mathematics , mechanical engineering , combinatorics , aerospace engineering
Summary Shake table tests are performed on temporary internal partitions for office buildings. Four different specimens are tested. A steel frame is designed to exhibit relative displacements which typically occur at a given story of ordinary buildings. Four different partition walls are tested simultaneously for each specimen typology. This allows investigating the influence of an innovative device on the seismic performance of the tested components. The innovative device avoids the unhooking of the panels from the supporting studs. Several shake table tests are performed subjecting the specimens to interstory drift ratios up to 1.57%. Both the hysteretic curves and the natural frequency trend highlight that the partitions do not contribute to the lateral stiffness of the test setup. The damping ratio increases after the partition walls are installed within the test frame, causing a beneficial effect in the dynamic response. Minor damage state occurs for interstory drift ratio (IDR) in the range 0.41–0.65% in standard specimens, whereas moderate and major damage states are attained for IDR in the range 0.51–0.95%. Significant increase of collapse IDR is recorded with the introduction of the innovative device, up to IDR larger than 1.45%. It can be therefore concluded that a simple innovative device is defined, which significantly improves the seismic performance of the tested specimen. Copyright © 2017 John Wiley & Sons, Ltd.