Premium
Seismic hybrid simulation of a nonductile RC building with severe damage to multiple columns
Author(s) -
Murray Justin A.,
Sasani Mehrdad
Publication year - 2016
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2828
Subject(s) - opensees , structural engineering , substructure , full scale , brittleness , progressive collapse , column (typography) , earthquake engineering , flexural strength , earthquake shaking table , engineering , shear (geology) , seismic analysis , geology , reinforced concrete , materials science , composite material , petrology , connection (principal bundle)
Summary Reinforced concrete frame structures built prior to the mid‐1970s are susceptible to brittle column failure under seismic action, potentially leading to progressive collapse of the structure. The behavior of columns susceptible to brittle shear‐axial failure has been studied previously but rarely has the interaction between damaged columns and the surrounding three‐dimensional structure been investigated experimentally and at full scale. In this study, as the second in a series of hybrid simulations, two full‐scale reinforced concrete columns of a representative pre‐1970s structure were tested at the Multi‐axial Full‐scale Substructure Testing and Simulation (MUST‐SIM) laboratory. Through the use of hybrid simulation, the interaction of the columns with the surrounding structure is studied under a severe seismic motion including vertical excitation. The computational model representing the remainder of the representative 10‐story structure is created in the computer program OpenSees. During the hybrid simulation, both physical specimens experience significant loss of shear and axial strength, and the effects of these failures on the surrounding system are described. The three‐dimensional computational model in OpenSees allowed for analytical flexural‐axial failure of a third column in the structure to occur. The effects of these multiple failures on the response of a full structural system under seismic action are quantified, and the progressive collapse resistance mechanisms are discussed. Copyright © 2016 John Wiley & Sons, Ltd.