Premium
Response prediction, experimental characterization and P‐spectra design of frames with viscoelastic–plastic dampers
Author(s) -
Guo Jack Wen Wei,
Christopoulos Constantin
Publication year - 2016
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2732
Subject(s) - damper , viscoelasticity , nonlinear system , structural engineering , moment (physics) , optimal design , frame (networking) , control theory (sociology) , computer science , engineering , materials science , physics , mechanical engineering , control (management) , classical mechanics , quantum mechanics , machine learning , artificial intelligence , composite material
Summary Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.