Premium
The effect of causal parameter bounds in PSHA‐based ground motion selection
Author(s) -
Tarbali Karim,
Bradley Brendon A.
Publication year - 2016
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2721
Subject(s) - ground motion , context (archaeology) , range (aeronautics) , magnitude (astronomy) , representation (politics) , selection (genetic algorithm) , seismic hazard , measure (data warehouse) , probabilistic logic , hazard , computer science , mathematics , statistics , geology , engineering , seismology , data mining , artificial intelligence , physics , paleontology , chemistry , organic chemistry , astronomy , aerospace engineering , politics , political science , law
Summary In this paper the effect of causal parameter bounds (e.g. magnitude, source‐to‐site distance, and site condition) on ground motion selection, based on probabilistic seismic hazard analysis (PSHA) results, is investigated. Despite the prevalent application of causal parameter bounds in ground motion selection, present literature on the topic is cast in the context of a scenario earthquake of interest, and thus specific bounds for use in ground motion selection based on PSHA, and the implications of such bounds, is yet to be examined. Thirty‐six PSHA cases, which cover a wide range of causal rupture deaggregation distributions and site conditions, are considered to empirically investigate the effects of various causal parameter bounds on the characteristics of selected ground motions based on the generalized conditional intensity measure (GCIM) approach. It is demonstrated that the application of relatively ‘wide’ bounds on causal parameters effectively removes ground motions with drastically different characteristics with respect to the target seismic hazard and results in an improved representation of the target causal parameters. In contrast, the use of excessively ‘narrow’ bounds can lead to ground motion ensembles with a poor representation of the target intensity measure distributions, typically as a result of an insufficient number of prospective ground motions. Quantitative criteria for specifying bounds for general PSHA cases are provided, which are expected to be sufficient in the majority of problems encountered in ground motion selection for seismic demand analyses. Copyright © 2016 John Wiley & Sons, Ltd.