Premium
The effect of seismic uplift on the shell stresses of liquid‐storage tanks
Author(s) -
Ormeño Miguel,
Larkin Tam,
Chouw Nawawi
Publication year - 2015
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2568
Subject(s) - earthquake shaking table , storage tank , geotechnical engineering , displacement (psychology) , structural engineering , shell (structure) , base (topology) , engineering , radius , geology , mechanical engineering , psychology , mathematical analysis , civil engineering , mathematics , computer security , computer science , psychotherapist
Summary Previous theoretical studies have shown that tank uplift, that is, separation of the tank base from the foundation, generally reduces the base shear and the base moment. However, there is a paucity of experimental investigations concerning the effect of uplift on the tank wall stresses, which is the principal parameter that controls the seismic design of liquid‐storage tanks. This paper reports a series of shake table experiments on a polyvinyl chloride model tank containing water. A comparison of the seismic behaviour of the tank with and without anchorage is described. Stochastically generated ground motions, based on a Japanese design spectrum, and three tank aspect ratios (liquid‐height/radius) are considered. Measurements were made of the stresses at the outer shell of the tank, the tank wall acceleration and the horizontal displacement at the top of the tank. While the top displacement and the tank shell acceleration increased when uplift was allowed, axial compressive stresses decreased by between 35% and 64% with tank uplift. The effect of uplift on the hoop stresses was variable depending on the aspect ratio. A comparison of experimental values with a numerical model is provided. Copyright © 2015 John Wiley & Sons, Ltd.