Premium
Seismic design and testing of the bottom vertical boundary elements in steel plate shear walls. Part 2: experimental studies
Author(s) -
Li ChaoHsien,
Tsai KehChyuan,
Lee HungChi
Publication year - 2014
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2442
Subject(s) - shear wall , steel plate shear wall , structural engineering , seismic analysis , finite element method , engineering , steel frame , buckling , geotechnical engineering , geology
SUMMARY This paper describes an experiment to investigate the seismic design and responses of the bottom column, also called the bottom vertical boundary element (VBE), in steel plate shear walls (SPSWs). The main objectives of this experiment include validating the effectiveness of the design method developed in the companion paper, investigating the experimental performance of VBEs under large interstory drifts, and calibrating analytical models for earthquake engineering of SPSWs. Three full‐scale two‐story SPSWs were cyclically tested at the Taiwan National Center for Research on Earthquake Engineering in 2011. Test results and numerical simulations confirm that the proposed design procedures are effective in predicting the plastic zone forming elevation in the lower half of the bottom VBE and the occurrence of yielding at the VBE's top end. Test results show that the premature yielding occurring at the top end of a bottom VBE would result in a deformation concentration at the bottom of SPSWs. In addition, lateral torsional buckling could take place on the bottom VBE after significant plastic rotations have developed at the top end. Test results suggest that preventing the VBE's top end from yielding is the key issue in the seismic design of SPSWs, and the proposed method can be effectively adopted to achieve this objective. Furthermore, the inelastic responses of the SPSW specimens were satisfactorily simulated by using detailed finite shell elements or simplified frame response analysis models. Copyright © 2014 John Wiley & Sons, Ltd.