Premium
The seismic performance of braced timber pile bents
Author(s) -
Shama Ayman A.,
Mander John B.
Publication year - 2003
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.236
Subject(s) - pile , fragility , structural engineering , bridge (graph theory) , engineering , earthquake shaking table , geotechnical engineering , earthquake engineering , seismic retrofit , forensic engineering , reinforced concrete , medicine , chemistry
Abstract The seismic performance of timber bridge substructures is not well established, particularly when compared to concrete highway bridges. This paper presents a dual experimental‐computational modelling program to investigate the seismic behaviour of typical braced timber bridge pile bents. For this purpose, a prototype timber bridge was used to develop a near‐full‐size physical model that was used for shaking table experiments and quasi‐static reversed cyclic loading tests on the laboratory strong‐floor. A non‐linear force‐displacement computational modelling study was also undertaken as a companion effort to the experimental investigation. On the basis of the experimental study, seismic vulnerability analysis was conducted for this kind of timber bridge principally with shaking in the transverse direction. In this analysis, a simplified fundamental mechanics‐based approach was employed from which fragility curves were derived. The study showed that braced timber pile bents have considerable strength and deformability capability. Nevertheless, they are not immune from earthquake damage. Copyright © 2003 John Wiley & Sons, Ltd.