z-logo
Premium
Envelope‐based pushover analysis procedure for the approximate seismic response analysis of buildings
Author(s) -
Brozovič Marko,
Dolšek Matjaž
Publication year - 2014
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2333
Subject(s) - incremental dynamic analysis , envelope (radar) , structural engineering , displacement (psychology) , mode (computer interface) , modal , modal analysis , response analysis , ground motion , roof , seismic analysis , engineering , failure mode and effects analysis , percentile , mathematics , finite element method , computer science , statistics , psychology , telecommunications , radar , chemistry , polymer chemistry , psychotherapist , operating system
SUMMARY An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here