Premium
Modeling of a large‐scale magneto‐rheological damper for seismic hazard mitigation. Part II: Semi‐active mode
Author(s) -
Chae Yunbyeong,
Ricles James M.,
Sause Richard
Publication year - 2012
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2236
Subject(s) - damper , nonlinear system , engineering , structural engineering , control theory (sociology) , current (fluid) , mechanics , physics , computer science , control (management) , electrical engineering , quantum mechanics , artificial intelligence
SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.