z-logo
Premium
Extracting rotational components of earthquake ground motion using data recorded at multiple stations
Author(s) -
Basu Dhiman,
Whittaker Andrew S.,
Constantinou Michael C.
Publication year - 2013
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.2233
Subject(s) - geodetic datum , rotation around a fixed axis , ground motion , series (stratigraphy) , geodesy , dimension (graph theory) , strong ground motion , geology , seismology , computer science , engineering , mathematics , mechanical engineering , paleontology , pure mathematics
Rotational components of earthquake ground motion have not been considered for seismic analysis, design and performance assessment because recordings of these components are unavailable. A number of procedures have been proposed to extract rotational components of ground motion from translational time series recorded at multiple, closely spaced recording stations. In this paper, a new procedure that is capable of capturing higher frequency content in rotational time‐series is presented. The frequencies at which numerical errors are introduced in the solution, which are a function of apparent wave velocity and array dimension, are identified. Results are presented for the proposed procedure, the widely accepted geodetic method, and a single‐station procedure developed by the authors, all using data recorded at the Lotung array in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom