z-logo
Premium
In situ cyclic tests on existing stone masonry walls and strengthening solutions
Author(s) -
Costa Alexandre A.,
Arêde António,
Costa Aníbal,
Oliveira Carlos Sousa
Publication year - 2010
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/eqe.1046
Subject(s) - masonry , unreinforced masonry building , engineering , work (physics) , test (biology) , civil engineering , structural engineering , vulnerability (computing) , forensic engineering , geotechnical engineering , construction engineering , computer science , geology , mechanical engineering , computer security , paleontology
Abstract The present work reports on an in situ experimental test campaign carried out on abandoned traditional masonry houses after the 9th July 1998 earthquake that seriously hit the Faial island of Azores. For the testing purposes, an experimental test setup was developed based on a self‐equilibrated scheme, which is herein described reporting on the advantages and drawbacks of this in situ test setup. Five specimens were tested aiming at characterizing the out‐of‐plane behavior of stone masonry walls and strengthening solutions recommended for post‐earthquake interventions. A detailed comparison between solutions' efficiency is presented including a cost vs benefit analysis. In order to assess the efficiency of the developed test setup for other applications on stone masonry walls, an in‐plane test on an existing URM panel is also presented. Several related issues are discussed, namely the advantages of dealing with the real boundary conditions and the capacity of providing valuable information of the response, as well as a detailed analysis of the obtained results. The authors believe that this work provides an increase in knowledge on the seismic behavior of the existing masonry constructions, resulting from the development of an in situ test setup and the efficiency quantification of strengthening solutions. Therefore, the work is thought to positively contribute for the preservation of architectural heritage and for its seismic vulnerability reduction. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here