z-logo
Premium
Experimental investigation on performance of absorbents for carbon dioxide capture from diesel engine exhaust
Author(s) -
Kumar Pulkit,
Rathod Vishwas,
Parwani Ajit Kumar
Publication year - 2021
Publication title -
environmental progress and sustainable energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.495
H-Index - 66
eISSN - 1944-7450
pISSN - 1944-7442
DOI - 10.1002/ep.13651
Subject(s) - exhaust gas , diesel exhaust , diesel engine , ammonia , diesel exhaust fluid , diesel fuel , environmental science , volume (thermodynamics) , exhaust gas recirculation , process engineering , solvent , carbon dioxide , waste management , automotive engineering , chemistry , engineering , organic chemistry , thermodynamics , physics
The postcombustion CO 2 capture technology (PCC) is the topic of surplus study because it offers ease of implementation in the existing systems. To the best of the authors' knowledge, this technique has never been used for the automobile sector which has a major contribution toward anthropogenic CO 2 . In this article, experimental investigation has been carried out on the chemical solvents to determine the efficacy of capturing CO 2 from multi‐pollutant diesel engine exhaust. The captured CO 2 is measured in terms of percentage by volume of the total exhaust gas from three primary amines solvents, that is, monoethanolamine (MEA), N , N ‐dimethylethanolamine (DMEA), and ammonia at seven brake power values, and their capture efficiencies are compared. A proposed design for the implementation of carbon capture unit in the existing heavy‐duty diesel engine has also been presented with theoretical calculation on the weight of the storage tank. Energy balance analyses have been performed to determine the energy needed to regenerate the solvents. It is found that the regeneration energy required for solvents MEA, DMEA, and ammonia is 2.2, 0.7, and 1.1 kWh, respectively which is quite lower than the total energy available with exhaust gas. Experimental results show that capture efficiency at ambient conditions with absorbents MEA, DMEA, and chilled ammonia is 90.95, 57.66, and 80.08, respectively. It reveals that the PCC method can be implemented in an existing diesel engine with MEA as an efficient and safe solvent.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here