z-logo
Premium
Recovery of energy and simultaneous treatment of dewatered sludge using membrane‐less microbial fuel cell
Author(s) -
Muaz M. Z. M.,
Abdul R.,
Vadivelu V. M.
Publication year - 2018
Publication title -
environmental progress and sustainable energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.495
H-Index - 66
eISSN - 1944-7450
pISSN - 1944-7442
DOI - 10.1002/ep.12919
Subject(s) - microbial fuel cell , response surface methodology , central composite design , chemistry , pulp and paper industry , wastewater , sewage treatment , chemical oxygen demand , energy recovery , bioenergy , renewable energy , chromatography , environmental engineering , materials science , electrode , waste management , environmental science , biofuel , mathematics , biology , statistics , energy (signal processing) , anode , ecology , engineering
Microbial fuel cells (MFC) haves drawn much attention as a potential approach for sludge treatment and renewable energy production. In this study, a single chamber air‐cathode in a membrane‐less MFC (ML‐MFC) was operated in batch mode with dewatered sludge from a municipal wastewater treatment plant as the substrate. Electrogenic bacterial species in the sludge acted as a catalyst for the generation of electricity. The performance of the ML‐MFC was evaluated using one‐factor‐at‐a‐time (OFAT) method followed by response surface methodology (RSM) via Central Composite Design using a quadratic model. In the preliminary OFAT study, the highest voltage generation (852.7 mV) and COD removal (149.2 mg/L) were obtained when the pH, electrode distance, moisture content, and temperature were at 6.0, 3 cm, 30% (vol/wt), and 35°C, respectively. After incubation of the ML‐MFC using optimum conditions suggested by the RSM, the voltage was successfully increased to 927.7 mV (improved 9%), while COD removal increased to 170.8 mg/L (improved 15%). This showed that optimization using RSM gave better results than the OFAT method. The maximum power density recorded from the optimum conditions was 41.3 mW/m 2 . © 2018 American Institute of Chemical Engineers Environ Prog, 38: 208–219, 2019

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom