z-logo
open-access-imgOpen Access
Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting
Author(s) -
Han Yanling,
Chen Yong,
Fan Rongli,
Li Zhaosheng,
Zou Zhigang
Publication year - 2021
Publication title -
ecomat
Language(s) - English
Resource type - Journals
ISSN - 2567-3173
DOI - 10.1002/eom2.12097
Subject(s) - overpotential , water splitting , photocatalysis , hydrogen production , materials science , catalysis , noble metal , photocatalytic water splitting , hydrogen , semiconductor , metal , transition metal , nanotechnology , inorganic chemistry , chemistry , electrochemistry , metallurgy , optoelectronics , biochemistry , organic chemistry , electrode
Hydrogen evolution from water splitting over semiconductors has been considered one of the most promising ways to address energy shortages and environmental pollution. Searching for low‐cost, highly efficient, and durable catalysts is the key to improve the hydrogen production rate. Expensive noble metals, such as Pt and Au, are generally loaded onto semiconductors to promote photocatalytic activity. Metal phosphides are promising candidates to replace noble metals in hydrogen generation via electrocatalytic or photocatalytic water splitting due to their low hydrogen‐producing overpotential, tunable electronic structure, high electrical conductivity, and low price. In this review article, the characteristics and synthetic methods of metal phosphides are briefly introduced, and the development of metal phosphides for electrocatalytic or photocatalytic water splitting is presented. Finally, the challenges and future directions of metal phosphides are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here