z-logo
Premium
Modeling annual rainfall: a robust maximum likelihood approach
Author(s) -
Haddad John N.,
Nimah Musa N.,
Farajallah Nadim
Publication year - 2007
Publication title -
environmetrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.68
H-Index - 58
eISSN - 1099-095X
pISSN - 1180-4009
DOI - 10.1002/env.805
Subject(s) - autoregressive model , mathematics , estimator , maximum likelihood , statistics , likelihood function , realization (probability) , restricted maximum likelihood , zero (linguistics) , gaussian , interval (graph theory) , function (biology) , transformation (genetics) , combinatorics , physics , biochemistry , chemistry , quantum mechanics , evolutionary biology , gene , biology , linguistics , philosophy
Let { X t } be a zero mean, Gaussian, autoregressive process of order one with parameter α. For a realization (X 1 ,X 2 ,…,X n )′ of { X t }, we consider the transformation Y t  = X t /X t−1 , for t = 2,…, n. Then the likelihood function of (Y 2 ,…, Y n ) can be derived and is shown to be independent of the parameter σ 2 . Now, maximum likelihood estimator for α is derived and interval estimates are then computed and used to determine the influence of each data point. Finally, a direct application to precipitation data will be given for illustration. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom