z-logo
Premium
Multivariate density estimation for interval‐censored data with application to a forest fire modelling problem
Author(s) -
Braun W. J.,
Stafford J. E.
Publication year - 2016
Publication title -
environmetrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.68
H-Index - 58
eISSN - 1099-095X
pISSN - 1180-4009
DOI - 10.1002/env.2396
Subject(s) - multivariate statistics , estimator , statistics , density estimation , interval estimation , mathematics , interval (graph theory) , estimation , context (archaeology) , econometrics , confidence interval , geography , engineering , systems engineering , archaeology , combinatorics
Local likelihood‐based density estimation methods are developed for multivariate interval‐censored data. An extension of the Nadaraya–Watson local regression estimator to the interval‐censored data context arises in a natural way. The conditional density estimation scheme is used to study the holdover distribution of lightning‐caused wildfire ignitions in Northern Ontario. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom