Premium
A spatial capture‐recapture model for territorial species
Author(s) -
Reich B. J.,
Gardner B.
Publication year - 2014
Publication title -
environmetrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.68
H-Index - 58
eISSN - 1099-095X
pISSN - 1180-4009
DOI - 10.1002/env.2317
Subject(s) - mark and recapture , microtus , statistics , population , econometrics , population size , spatial analysis , geography , poisson distribution , point process , independence (probability theory) , computer science , mathematics , demography , archaeology , sociology
Advances in field techniques have lead to an increase in spatially referenced capture–recapture data to estimate a species' population size as well as other demographic parameters and patterns of space usage. Statistical models for these data have assumed that the number of individuals in the population and their spatial locations follow a homogeneous Poisson point process model, which implies that the individuals are uniformly and independently distributed over the spatial domain of interest. In many applications, there is reason to question independence, for example, when species display territorial behavior. In this paper, we propose a new statistical model, which allows for dependence between locations to account for avoidance or territorial behavior. We show via a simulation study that accounting for this can improve population size estimates. The method is illustrated using a case study of small mammal trapping data to estimate avoidance and population density of adult female field voles (Microtus agrestis) in Northern England. Copyright © 2014 John Wiley & Sons, Ltd.