z-logo
Premium
Gibbs point process models with mixed effects
Author(s) -
Illian Janine B.,
Hendrichsen Ditte K.
Publication year - 2009
Publication title -
environmetrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.68
H-Index - 58
eISSN - 1099-095X
pISSN - 1180-4009
DOI - 10.1002/env.1008
Subject(s) - context (archaeology) , point process , mixed model , mathematics , random effects model , generalized linear mixed model , poisson distribution , statistics , econometrics , geography , medicine , meta analysis , archaeology
We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al. , 1995, Illian et al. , 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993). The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom