Premium
Ultra‐Thin Atomic Layer Deposited–Nb 2 O 5 as Electron Transport Layer for Co‐Evaporated MAPbI 3 Planar Perovskite Solar Cells
Author(s) -
Subbiah Anand S.,
Dhara Arpan K.,
Mahuli Neha,
Banerjee Suman,
Sarkar Shaibal Kanti
Publication year - 2020
Publication title -
energy technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.91
H-Index - 44
eISSN - 2194-4296
pISSN - 2194-4288
DOI - 10.1002/ente.201900878
Subject(s) - perovskite (structure) , atomic layer deposition , materials science , layer (electronics) , perovskite solar cell , bilayer , hysteresis , thin film , chemical engineering , planar , solar cell , optoelectronics , nanotechnology , chemistry , condensed matter physics , biochemistry , physics , computer graphics (images) , membrane , computer science , engineering
Herein, the performance of atomic layer deposited (ALD)‐Nb 2 O 5 is compared with existing standard electron transport layer (ETL) configuration in planar n‐i‐p perovskite solar cell architectures. By making use of a co‐evaporated perovskite absorber layer, electron transport materials, such as phenyl‐C61‐butyric acid methyl ester (PCBM), TiO 2 , and Nb 2 O 5 , are compared in stand‐alone and bilayer configurations. The device performance in terms of hysteresis, scan rate dependency, and stability is associated with ETL–perovskite interactions and ALD‐Nb 2 O 5 fabricated using a PCBM interfacial layer exhibits superior behavior on all fronts. Using an atomic layer deposition technique can drastically reduce the process temperatures, resulting in conformal Nb 2 O 5 suitable for evaporated perovskite absorbers with promise toward using them in flexible applications.