Open Access
Metabolic crosstalk between the heart and liver impacts familial hypertrophic cardiomyopathy
Author(s) -
Magida Jason A,
Leinwand Leslie A
Publication year - 2014
Publication title -
embo molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.923
H-Index - 107
eISSN - 1757-4684
pISSN - 1757-4676
DOI - 10.1002/emmm.201302852
Subject(s) - medicine , hypertrophic cardiomyopathy , endocrinology , pressure overload , cardiomyopathy , crosstalk , very low density lipoprotein , ampk , biology , muscle hypertrophy , protein kinase a , heart failure , lipoprotein , cholesterol , kinase , microbiology and biotechnology , cardiac hypertrophy , physics , optics
Abstract Familial hypertrophic cardiomyopathy ( HCM ) is largely caused by dominant mutations in genes encoding cardiac sarcomeric proteins, and it is etiologically distinct from secondary cardiomyopathies resulting from pressure/volume overload and neurohormonal or inflammatory stimuli. Here, we demonstrate that decreased left ventricular contractile function in male, but not female, HCM mice is associated with reduced fatty acid translocase ( CD 36) and AMP ‐activated protein kinase ( AMPK ) activity. As a result, the levels of myocardial ATP and triglyceride ( TG ) content are reduced, while the levels of oleic acid and TG in circulating very low density lipoproteins ( VLDL s) and liver are increased. With time, these metabolic changes culminate in enhanced glucose production in male HCM mice. Remarkably, restoration of ventricular TG and ATP deficits via AMPK agonism as well as inhibition of gluconeogenesis improves ventricular architecture and function. These data underscore the importance of the systemic effects of a primary genetic heart disease to other organs and provide insight into potentially novel therapeutic interventions for HCM .