
microRNAs: the art of silencing in the ear
Author(s) -
Rudnicki Anya,
Avraham Karen B.
Publication year - 2012
Publication title -
embo molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.923
H-Index - 107
eISSN - 1757-4684
pISSN - 1757-4676
DOI - 10.1002/emmm.201100922
Subject(s) - microrna , gene silencing , zebrafish , inner ear , biology , rna interference , transcriptome , translation (biology) , microbiology and biotechnology , rna induced silencing complex , computational biology , gene expression , gene , rna , genetics , non coding rna , neuroscience , messenger rna
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate gene expression through the RNA interference (RNAi) pathway and by inhibition of mRNA translation. miRNAs first made their appearance in the auditory and vestibular systems in 2005, with the discovery of a triad of hair cell‐specific miRNAs later found to be involved in both human and mouse deafness. Since then, miRNAs have been implicated in other medical conditions related to these systems, such as cholesteatomas, vestibular schwannomas and otitis media. Due to the limitations in studying miRNAs and their targets derived from human inner ears, animal models are vital in this field of research. Therefore their role in inner ear development and function has been demonstrated by studies in zebrafish and mice. Transcriptomic and proteomic approaches have been undertaken to identify miRNAs and their targets. Finally, it has been suggested that miRNAs may be used in the future in regeneration of inner ear hair cells and ultimately play a role in therapeutics.