Premium
Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning
Author(s) -
Alves Debora Kristina M.,
Kummrow Fábio,
Cardoso Arnaldo A.,
Morales Daniel A.,
Umbuzeiro Gisela A.
Publication year - 2016
Publication title -
environmental and molecular mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1
H-Index - 87
eISSN - 1098-2280
pISSN - 0893-6692
DOI - 10.1002/em.21970
Subject(s) - particulates , environmental chemistry , chemistry , ames test , environmental science , microsome , biomass (ecology) , salmonella , toxicology , biology , biochemistry , agronomy , organic chemistry , bacteria , genetics , enzyme
Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella /microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella /microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m 3 without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro‐polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NO x and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen. 57:41–50, 2016. © 2015 Wiley Periodicals, Inc.