Premium
DNA polymerases in nonhomologous end joining: Are there any benefits to standing out from the crowd?
Author(s) -
Ramsden Dale A.,
Asagoshi Kenjiro
Publication year - 2012
Publication title -
environmental and molecular mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1
H-Index - 87
eISSN - 1098-2280
pISSN - 0893-6692
DOI - 10.1002/em.21725
Subject(s) - polymerase , non homologous end joining , dna polymerase , biology , genetics , dna repair , dna , dna polymerase mu , computational biology , circular bacterial chromosome
Chromosome breaks, often with damaged or missing DNA flanking the break site, are an important threat to genome stability. They are repaired in vertebrates primarily by nonhomologous end joining (NHEJ). NHEJ is unique among the major DNA repair pathways in that a continuous template cannot be used by DNA polymerases to instruct replacement of damaged or lost DNA. Nevertheless, at least 3 out of the 17 mammalian DNA polymerases are specifically employed by NHEJ. Biochemical and structural studies are further revealing how each of the polymerases employed by NHEJ possesses distinct and sophisticated means to overcome the barriers this pathway presents to polymerase activity. Still unclear, though, is how the resulting network of overlapping and nonoverlapping polymerase activities contributes to repair in cells. Environ. Mol. Mutagen., 2012. © 2012 Wiley Periodicals, Inc.