z-logo
open-access-imgOpen Access
Fast genome editing in  Bacillus subtilis
Author(s) -
Wu Guo,
Drufva Erin,
Wu Kang
Publication year - 2019
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.201800164
Subject(s) - bacillus subtilis , plasmid , electroporation , transformation (genetics) , escherichia coli , genome , biology , genome editing , dna , transformation efficiency , gene , computational biology , genetics , bacteria , agrobacterium
Bacillus subtilis is a model organism for Gram‐positive bacteria and widely used in the study of cellular functions and processes including protein secretion, sporulation, and signal transduction. It is also an important industrial host for the production of proteins and chemicals. Generally, genome editing of B. subtilis often needs the construction of integration vectors in Escherichia coli , linearizing the constructed plasmids, and subsequent transformation of the linear deoxyribonucleic acid via natural competence or electroporation. In this work, we examined the feasibility to directly transform and integrate B. subtilis using linear deoxyribonucleic acid from Gibson assembly without the need for cloning in E. coli . Linear deoxyribonucleic acid of 8–10 kb showed the highest transformation efficiency which was similar to that of using linearized plasmids constructed in E. coli . This method shortens the overall process from 1 week to 1 day and allows the integration of multiple genes in one step, providing a simple and fast method for genome editing in B. subtilis .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here