
Coupled biosynthesis and esterification of 1,2,4‐butanetriol to simplify its separation from fermentation broth
Author(s) -
Feng Xinjun,
Gao Wenjie,
Zhou Yifei,
Zhao Zhiqiang,
Liu Xiutao,
Han Xiaojuan,
Xian Mo,
Zhao Guang
Publication year - 2019
Publication title -
engineering in life sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.547
H-Index - 57
eISSN - 1618-2863
pISSN - 1618-0240
DOI - 10.1002/elsc.201800131
Subject(s) - biochemistry , fermentation , biosynthesis , coenzyme a , metabolic engineering , biology , wax ester , escherichia coli , acyltransferases , enzyme , fatty acid , gene , reductase
1,2,4‐Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4‐butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase (Atf) from Acinetobacter baylyi , Mycobacterium smegmatis , and Escherichia coli were screened, and the acyltransferase from A. baylyi (AtfA) was found to have higher capability. The BT producing strain with AtfA overexpression produced 49.5 mg/L BT oleate in flask cultivation. Through enhancement of acyl‐CoA production by overexpression of the acyl‐CoA synthetase gene fadD and deleting the acyl coenzyme A dehydrogenase gene fadE , the production was improved to 64.4 mg/L. Under fed‐batch fermentation, the resulting strain produced up to 1.1 g/L BT oleate. This is the first time showed that engineered E. coli strains can successfully produce BT esters from xylose and free fatty acids.